Sumarização abstrativa de textos em português utilizando aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Paiola, Pedro Henrique
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/236858
Resumo: A sumarização automática consiste no processo de capturar as informações mais relevantes de um texto e condensá-las em um texto compreensível em linguagem natural. Este processo pode ser classificado como sumarização extrativa, quando identifica as sentenças mais importantes do texto de origem para compor o sumário utilizando as mesmas sentenças, ou sumarização abstrativa, quando gera novas sentenças baseadas nas informações mais relevantes do texto de origem. Pesquisas em sumarização automática abstrativa para o português brasileiro ainda são escassas, especialmente para sumarização abstrativa baseada em aprendizado em profundidade. Por este motivo, este consiste no foco desta pesquisa. Nesta dissertação são apresentados experimentos com modelos pré-treinados, ajustados para as bases TeMário, CSTNews e para os textos em português da WikiLingua e XL-Sum. Os resultados apresentados por estes experimentos são relativamente satisfatórios, ainda apresentando problemas, dos quais a maioria são comuns em sumarização abstrativa, mas que podem servir como ponto de partida para futuras pesquisas.