[en] CONVOLUTIONAL NEURAL NETWORK FOR SEISMIC HORIZONS IDENTIFICATION
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61112&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61112&idi=2 http://doi.org/10.17771/PUCRio.acad.61112 |
Resumo: | [pt] O petróleo e gás são importantes na economia mundial, utilizados como matéria-prima em vários produtos. Para a extração desses produtos é necessário realizar a caracterização dos reservatórios de hidrocarbonetos. A partir dessa caracterização são extraídos um volume com dados sísmicos da região de interesse. Esses dados são interpretados para identificação de várias características, como a classificação de fácies sísmicas, horizontes, falhas, e gás. A grande quantidade de dados do volume de sísmica, torna a interpretação manual cada vez mais desafiadora. Muitos pesquisadores da área de interpretação sísmica tem investido em métodos utilizando redes neurais. As redes neurais convolucionais (CNN) são muito utilizadas em problemas de visão computacional, e obtém ótimos resultados em muitos problemas com dados 2D. O presente trabalho tem como objetivo a aplicação de redes neurais convolucionais no mapeamento supervisionado de horizontes sísmicos. Avaliamos nossa proposta usando o bloco F3 com as anotações de fácies sísmicas. Os dados foram utilizados baseados em modelo de seção e patches. Na previsão de horizonte foram avaliadas as arquiteturas da ResUnet e DC-Unet. Como função de perda foram analisadas a Generalized Dice e a perda Focal Tversky. O método mostrou resultados promissores com a ResUnet e função de perda Focal Tversky, nos dados baseados em patches de 128x128, alcançando aproximadamente 56 por cento na métrica Dice. A implementação completa e as redes treinadas estão disponíveis em https://github.com/mayaragomys/seismic_horizons. |