[en] AN APPROACH TO MODEL MULTITEMPORAL KNOWLEDGE IN AUTOMATIC INTERPRETATION PROCESS OF REMOTELY SENSED IMAGES

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: VANESSA DE OLIVEIRA CAMPOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7963&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7963&idi=2
http://doi.org/10.17771/PUCRio.acad.7963
Resumo: [pt] O presente trabalho apresenta uma metodologia para modelagem do conhecimento multitemporal para a interpretação automática de imagens de sensores remotos. O procedimento de interpretação utilizado combina os conhecimentos multitemporal e espectral usando técnicas da lógica nebulosa. O método utiliza diagramas de transição de estado para representar as possibilidades de mudanças de classe dentro de um determinado intervalo de tempo. As possibilidades de mudança são estimadas a partir de dados históricos da mesma região usando algoritmos genéticos. O método foi validado experimentalmente usando como base um conjunto de imagens Landsat-5 da cidade do Rio de Janeiro, obtidas em 5 datas separadas por aproximadamente 4 anos. Os resultados experimentais indicaram que o uso do conhecimento multitemporal, conforme modelado pelo método proposto traz uma melhora importante de desempenho da classificação em comparação à classificação puramente espectral.