[pt] INFERÊNCIA DE TUNING ATRAVÉS DA ONDBTUNING

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: LUCIANA DE SA SILVA PERCILIANO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58605&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58605&idi=2
http://doi.org/10.17771/PUCRio.acad.58605
Resumo: [pt] OnDBTuning é uma ontologia de tuning (semi-automático) de banco de dados relacional. Ontologias são artefatos que representam o conhecimento de um domínio específico e podem ser usadas para se inferir conhecimentos. No entanto, em geral, a maioria das aplicações envolve apenas uma descrição formal e estática de conceitos. Além disso, como tuning de banco de dados envolve muitas regras baseadas na experiência e em algoritmos de caixa preta, torna-se um desafio descrever esse processo de inferência. Esse trabalho de pesquisa apresenta primeiramente a solução OnDBTuning que é uma ontologia no domínio de tuning. Em seguida, ele propõe uma implementação de regras em SPARQL Inferencing Notation (SPIN) na OnDBTuning. Por fim, mostra uma avaliação prática da solução para recomendação de índices e visões materializadas.