[en] SUPER-RESOLUTION IN TOMOGRAPHIC IMAGES OF IRON ORE BRIQUETTES EMPLOYING DEEP LEARNING

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: BERNARDO AMARAL PASCARELLI FERREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64283&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64283&idi=2
http://doi.org/10.17771/PUCRio.acad.64283
Resumo: [pt] A indústria mineral vem presenciando, ao longo das últimas décadas, uma redução da qualidade de minério de ferro extraído e o surgimento de novas demandas ambientais. Esta conjuntura fortalece a busca por produtos provenientes do minério de ferro que atendam aos requisitos da indústria siderúrgica, como é o caso de novos aglomerados de minério de ferro. A Microtomografia de Raios-X (microCT) permite a caracterização da estrutura tridimensional de uma amostra, com resolução micrométrica, de forma não-destrutiva. Entretanto, tal técnica apresenta diversas limitações. Quanto melhor a resolução, maior o tempo de análise e menor o volume de amostra adquirido. Modelos de Super Resolução (SR), baseados em Deep Learning, são uma poderosa ferramenta para aprimorar digitalmente a resolução de imagens tomográficas adquiridas em pior resolução. Este trabalho propõe o desenvolvimento de uma metodologia para treinar três modelos de SR, baseados na arquitetura EDSR, a partir de imagens tomográficas de briquetes de redução direta: Um modelo para aumento de resolução de 16 um para 6 um, outro para aumento de 6 um para 2 um, e o terceiro para aumento de 4 um para 2 um. Esta proposta tem como objetivo mitigar as limitações do microCT, auxiliando o desenvolvimento de novas metodologias de Processamento Digital de Imagens para os aglomerados. A metodologia inclui diferentes propostas para avaliação do desempenho da SR, como comparação de PSNR e segmentação de poros. Os resultados apontam que a SR foi capaz de aprimorar a resolução das imagens tomográficas e mitigar ruídos habituais da tomografia.