[en] SEISMIC IMAGE SUPER RESOLUTION

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: PEDRO FERREIRA ALVES PINTO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61491&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61491&idi=2
http://doi.org/10.17771/PUCRio.acad.61491
Resumo: [pt] A super resolução (SR) é um tema de suma importância em domínios de conhecimentos variados, como por exemplo a área médica, de monitoramento e de segurança. O uso de redes neurais profundas para a resolução desta tarefa é algo extremamente recente no universo da sísmica, tendo poucas referências, as quais começaram a ser divulgadas há menos de 2 anos. Todavia, a literatura apresenta uma vasta gama de métodos, que utilizam redes neurais para a super resolução de imagens naturais. Tendo isto em vista, o objetivo deste trabalho é explorar tais abordagens aplicadas em dados sísmicos sintéticos de reservatórios. Para isto, foram empregados modelos de importância cronológica na literatura e foram comparados com um método clássico de interpolação e com os modelos da literatura de super resolução de imagens sísmicas. São estes modelos: o SRCNN, o RDN, a abordagem do Deep Image Prior e o SAN. Por fim, os resultados apresentam que o PSNR obtido por arquiteturas de projetos no domínio da sísmica equivale a 38.23 e o melhor resultado das arquiteturas propostas 38.62, mostrando o avanço que tais modelos trazem ao campo da sísmica.