[en] PREDICTING TRENDS IN THE STOCK MARKET
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34653&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34653&idi=2 http://doi.org/10.17771/PUCRio.acad.34653 |
Resumo: | [pt] Investidores estão sempre à procura de uma vantagem. Porém, tradicionais teorias financeiras nos dizem que tentar predizer tendências na bolsa de valores é um esforço em vão, uma vez que seguem um passeio aleatório, i.e., um processo estocástico ou randômico. Além disso, afirma-se que o mercado é eficiente de maneira que sempre incorpora e reflete toda informação relevante, o que torna impossível bater o mercado. Recentemente, com o crescimento da web e aumento da disponibilidade de dados em conjunto com a evolução dos algoritmos de Aprendizado de Máquina, diversos trabalhos tem aplicado técnicas de Processamento de Linguagem Natural em notícias financeiras e dados de redes sociais para prever variações do preço de ações. Consequentemente, estão surgindo fortes evidências que o mercado pode, em algum grau, ser previsto. Este trabalho descreve o desenvolvimento de uma aplicação baseada em Aprendizado de Máquina para realizar a predição de tendências no mercado de ações, i.e., variações negativas, positivas ou neutras de preços com granularidade de minuto. Avaliamos o sistema usando dados de cotação de ações da B3 (Brasil Bolsa Balcão), antiga BM&FBOVESPA, e um dataset de tópicos mais relevantes buscados no Google Search e seus artigos relacionados, que são disponibilizados pela plataforma Google Trends e coletados, minuto a minuto, de 15/08/2016 até 10/07/2017. Os experimentos mostram que esses dados provêem informação relevante para a tarefa em questão, onde conseguimos uma acurácia de 69.24 porcento para a predição de tendências do ativo PETR4, criando alguma |