[pt] AGRUPAMENTO DE AÇÕES POR EMBEDDINGS TEXTUAIS NA PREVISÃO DE PREÇOS

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: ANDRE DAVYS CARVALHO MELO DE OLIVEIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49081&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49081&idi=2
http://doi.org/10.17771/PUCRio.acad.49081
Resumo: [pt] Realizar previsões de preços no mercado de ações é uma tarefa difícil devido ao fato de o mercado financeiro ser um ambiente altamente dinâmico, complexo e caótico. Para algumas teorias financeiras, usar as informações disponíveis para tentar prever o preço de uma ação a curto prazo é um esforço em vão já que ele sofre a influência de diversos fatores externos e, em decorrência, sua variação assemelha-se à de um passeio aleatório. Estudos recentes, como (37) e (51), abordam o problema com modelos de predição específicos para o comportamento do preço de uma ação isolada. Neste trabalho, apresenta-se uma proposta para prever variações de preço tendo como base conjuntos de ações consideradas similares. O objetivo é criar um modelo capaz de prever se o preço de diferentes ações tendem a subir ou não a curto prazo, considerando informações de ações pertencentes a conjuntos similares com base em duas fontes de informações: os dados históricos das ações e as notícias do Google Trends. No estudo proposto, primeiramente é aplicado um método para identificar conjuntos de ações similares para então criar um modelo de predição baseado em redes neurais LSTM (long shortterm memory) para esses conjuntos. Mais especificamente, foram conduzidos dois experimentos: (1) aplicação do algoritmo K-Means para a identificação dos conjuntos de ações similares, seguida da utilização de uma rede neural LSTM para realizar as previsões, e (2) aplicação do algoritmo DBSCAN para a criação dos conjuntos seguida da mesma rede LSTM para prever as variações de preço. O estudo foi realizado em um conjunto com 51 ações do mercado acionário brasileiro, e os experimentos sugeriram que utilizar um método para criar conjuntos de ações similares melhora os resultados em aproximadamente 7 porcento de acurácia e f1-score, e 8 porcento de recall e precision quando comparados a modelos para ações isoladas.