[en] DATA SELECTION FOR LVQ
Ano de defesa: | 2004 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5492&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5492&idi=2 http://doi.org/10.17771/PUCRio.acad.5492 |
Resumo: | [pt] Nesta dissertação, propomos uma metodologia para seleção de dados em modelos de Aprendizado por Quantização Vetorial, referenciado amplamente na literatura pela sigla em inglês LVQ. Treinar um modelo (ajuste dentro-daamostra) com um subconjunto selecionado a partir do conjunto de dados disponíveis para o aprendizado pode trazer grandes benefícios no resultado de generalização (fora-da-amostra). Neste sentido, é muito importante realizar uma busca para selecionar dados que, além de serem representativos de suas distribuições originais, não sejam ruído (no sentido definido ao longo desta dissertação). O método proposto procura encontrar os pontos relevantes do conjunto de entrada, tendo como base a correlação do erro de cada ponto com o erro do restante da distribuição. Procura-se, em geral, eliminar considerável parte do ruído mantendo os pontos que são relevantes para o ajuste do modelo (aprendizado). Assim, especificamente em LVQ, a atualização dos protótipos durante o aprendizado é realizada com um subconjunto do conjunto de treinamento originalmente disponível. Experimentos numéricos foram realizados com dados simulados e reais, e os resultados obtidos foram muito interessantes, mostrando claramente a potencialidade do método proposto. |