[en] NEW TECHNIQUES OF PATTERN CLASSIFICATION BASED ON LOCAL-GLOBAL METHODS

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: RODRIGO TOSTA PERES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12959&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12959&idi=2
http://doi.org/10.17771/PUCRio.acad.12959
Resumo: [pt] O foco desta tese está direcionado a problemas de Classificação de Padrões. A proposta central é desenvolver e testar alguns novos algoritmos para ambientes supervisionados, utilizando um enfoque local- global. As principais contribuições são: (i) Desenvolvimento de método baseado em quantização vetorial com posterior classificação supervisionada local. O objetivo é resolver o problema de classificação estimando as probabilidades posteriores em regiões próximas à fronteira de decisão; (ii) Proposta do que denominamos Zona de Risco Generalizada, um método independente de modelo, para encontrar as observações vizinhas à fronteira de decisão; (iii) Proposta de método que denominamos Quantizador Vetorial das Fronteiras de Decisão, um método de classificação que utiliza protótipos, cujo objetivo é construir uma aproximação quantizada das regiões vizinhas à fronteira de decisão. Todos os métodos propostos foram testados em bancos de dados, alguns sintéticos e outros publicamente disponíveis.