[en] A NEURAL NETWORK FOR ONLINE PORTFOLIO SELECTION WITH SIDE INFORMATION

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: GUILHERME AUGUSTO SCHUTZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36111&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36111&idi=2
http://doi.org/10.17771/PUCRio.acad.36111
Resumo: [pt] O mercado financeiro é essencial na economia, trazendo estabilidade, acesso a novos tipos de investimentos, e aumentando a capacidade das empresas no acesso ao crédito. A constante busca por reduzir o papel de especialistas humanos na tomada de decisão, visa reduzir o risco inerente as emoções intrínsecas do ser humano, do qual a máquina não compartilha. Como consequência, reduzindo efeitos especulativos no mercado, e aumentando a precisão nas decisões tomadas. Neste trabalho é discutido o problema de seleção de portfólios online, onde um vetor de alocações de ativos é requerido em cada passo. O algoritmo proposto é o multilayer perceptron with side information - MLPi. Este algoritmo utiliza redes neurais para a solução do problema quando o investidor tem acesso a informações futuras sobre o preço dos ativos. Para avaliar o uso da informação lateral na seleção de portfolio, testamos empiricamente o MLPi em contraste com dois algoritmos, um baseline e o estado-da-arte. Como baseline é utilizado o buy-and-hold. O estado-da-arte é o algoritmo online moving average mean reversion proposto por Li e Hoi (2012). Para avaliar a utilização de informação lateral no algoritmo MLPi é definido um benchmark baseado numa solução ótima simples utilizando a informação lateral, mas sem considerar a acurácia da informação futura. Para os experimentos, utilizamos informações a nível de minuto do mercado de ações brasileiro, operados na bolsa de valores B3. É simulado um preditor de preço com 7 níveis de acurácia diferentes para 200 portfólios. Os resultados apontam que tanto o benchmark quanto o MLPi superam os dois algoritmos selecionados, para níveis de acurácia de um ativo maiores que 50 por cento, e na média, o MLPi supera o benchmark em todos os níveis de acurácia simulados.