[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: RODRIGO CANTO CORBELLI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988&idi=2
http://doi.org/10.17771/PUCRio.acad.47988
Resumo: [pt] A previsão de movimentos futuros para o mercado de ações é conhecidamente uma tarefa difícil de ser satisfatoriamente realizada. Além disso, a própria possibilidade desta previsão é constantemente questionada na literatura. O estudo presente investiga se essa dificuldade poderia ser amenizada escolhendo janelas específicas de tempo, onde uma dinâmica mais evidente prevaleça, e se a identificação desses períodos pode ser aprendida através de dados passados. Um framework é proposto para tratar desses problemas. Esse framework é nomeado de Predictability Crawler (P-Craw). A proposta usa rotinas de otimização como o Particle Swarm Optimization (PSO) e Algorítimos Genéticos (GA) para selecionar sub-conjuntos de dados históricos onde modelos de aprendizado estatístico possam ser treinados de forma mais eficiente. Para validar a acurácia do método, este é testado em dois diferentes conjuntos de dados. Primeiro, simulações com diferentes níveis de ruído são geradas. Nelas, o P-Craw é capaz de identificar os subconjuntos ótimos em cenários com 20 por cento a 100 por cento de amostras previsíveis. Por fim, dados de transações intradiárias da bolsa de valores brasileira (BOVESPA) são agregados e processados uma matrix de variáveis de entrada e um vetor de previsões. Quando o P-Craw é testado contra o método usual de treinar os modelos em todo conjunto histórico disponível nos dados da BOVESPA, o framework é capaz de aumentar significativamente o número de vezes que o modelo acerta a direção do movimento do preço das ações, enquanto consegue chegar a reduzir em até 19 por cento o erro médio absoluto da tarefa.