[en] INTELLIGENT WELL TRANSIENT TEMPERATURE SIGNAL RECONSTRUCTION

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: MANOEL FELICIANO DA SILVA JUNIOR
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55807&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55807&idi=2
http://doi.org/10.17771/PUCRio.acad.55807
Resumo: [pt] A tecnologia de poços inteligentes já possui muitos anos de experiência de campo. Inúmeras publicações tem descrito como o controle de fluxo remoto e os sistemas de monitoração podem diminuir o número de intervenções, o número de poços e aumentar a eficiência do gerenciamento de reservatórios. Apesar da maturidade dos equipamentos de completação o conceito de poço inteligente integrado como um elemento chave do Digital Oil Field ainda não está completmente desenvolvido. Sistemas permanentes de monitoração nesse contexto tem um papel fundamental como fonte da informação a respeito do sistema de produção real visando calibração de modelos e minimização de incerteza. Entretanto, cada sensor adicional representa aumento de complexidade e de risco operacional. Um entendimento fundamentado do que realmente é necessário, dos tipos de sensores aplicáveis e quais técnicas de análises estão disponíveis para extrair as informações necessárias são pontos chave para o sucesso do projeto de um poço inteligente. Este trabalho propõe uma nova forma de tratar os dados em tempo real de poços inteligentes através da centralização do pré-processamento dos dados. Um modelo poço inteligente numérico para temperatura em regime transiente foi desenvolvido, testado e validado com a intenção de gerar dados sintéticos. A aplicação foi escolhida sem perda de generalidade como um exemplo representativo para validação dos algorítmos de limpeza e extração de características desenvolvidos. Os resultados mostraram aumento da eficiência quando comparados com o estado da arte e um potencial para capturar a influência mútua entre os processos de produção.