[en] AN INTRODUCTION TO ELLIPTIC CURVES OVER FINITE FIELDS
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53709&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53709&idi=2 http://doi.org/10.17771/PUCRio.acad.53709 |
Resumo: | [pt] Curvas elípticas são objeto de estudo pelos matemáticos há mais de 200 anos. Por si só, é uma teoria bastante interessante por estar relacionada com diversas áreas da matemática: álgebra, equações diofantinas e geometria algébrica, dentre outras. Recentemente, diversos pesquisadores sugeriram o uso de curvas elípticas para resolver problemas práticos; como exemplos, podemos citar a criptografia, algoritmos para fatoração de números inteiros e testes de primalidade. Uma curva elíptica é definida sobre um corpo (no sentido algébrico). Essa dissertação tem por objetivo apresentar os primeiros elementos da teoria das curvas elípticas sobre corpos finitos. Como veremos, o desenvolvimento do tema aborda diversos tópicos da educação básica. Para isso, iniciaremos o trabalho com uma introdução utilizando o corpo dos números reais e, em seguida, incluiremos a teoria mais geral sobre essas curvas algébricas. Concluiremos então com algumas propriedades e resultados de curvas elípticas sobre corpos finitos, incluindo alguns exemplos e a interpretação geométrica da soma de dois pontos de curvas sobre corpos finitos específicos. |