Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Santana, Adriano Gomes de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.uel.br/handle/123456789/13653
|
Resumo: |
Resumo: Um sistema de criptografia de curvas elípticas se baseia no uso do algoritmo de criptografia de chave pública de ElGamal sobre o grupo de pontos de uma curva elíptica definida sobre um corpo finito Em geral, os protocolos de segurança para computadores utilizam apenas curvas elípticas definidas sobre corpos de cardinalidade prima p ou 2k Neste trabalho é proposto o uso do grupo de pontos em extensões finitas do corpo de definição de uma curva elíptica; para isso é desenvolvido um algoritmo de adição de pontos utilizando o endomorfismo de Frobenius que, em certa classe de curvas, é mais eficiente que o algoritmo tradicional Também é descrito um método eficiente para obter a ordem do grupo de pontos destas curvas Finalmente é apresentado uma generalização do algoritmo de primalidade de Miller para a obtenção de polinômios irredutível sobre corpos finitos, essenciais para o trabalho com extensões destes corpos, e os resultados obtidos a partir da implementação destes algoritmos |