Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Flose, Vania Batista Schunck [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/94347
|
Resumo: |
Com o crescimento da comunicação nos dias atuais, a segurança na troca de informa- ções tem se tornado cada vez mais importante o que tem dado destaque a Criptografia. A criptografia consiste de técnicas baseadas em conceitos matemáticos que tem por objetivo transmitir informações sigilosas forma segura através de canais monitorados por terceiros. Um ramo da Criptografia que vem crescendo está ligado ao estudo de curvas elípticas, que é uma das áreas mais ricas da matemática. O nome curvas elípticas é de certa forma enganoso, pois diferente do sentido literal da palavra, que leva a pensar em elipses, se trata de equações relacionadas a um determinado tipo de curva algébrica. Neste trabalho, as curvas elípticas serão estudadas do ponto de vista da álgebra e da teoria dos números com o objetivo de conhecer a Criptografia de Curvas Elípticas que é uma variação do Problema do Logaritmo Discreto |