[en] A ROBUST REAL-TIME COMPONENT FOR PERSONAL PROTECTIVE EQUIPMENT DETECTION IN AN INDUSTRIAL SETTING

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: PEDRO HENRIQUE LOPES TORRES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53751&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53751&idi=2
http://doi.org/10.17771/PUCRio.acad.53751
Resumo: [pt] Em grandes indústrias, como construção, metalúrgica e petróleo, trabalhadores são continuamente expostos a vários tipos de perigos em seus locais de trabalho. Segundo a Organização Internacional do Trabalho (OIT), anualmente ocorrem cerca de 340 milhões de acidentes de trabalho. Equipamentos de Proteção Individual (EPI) são utilizados para garantir a proteção essencial da saúde e segurança dos trabalhadores. Com isto, há um grande esforço para garantir que esses tipos de equipamentos sejam usados de maneira adequada em ambientes de trabalho. Em tais ambientes, é comum ter câmeras de circuito fechado de televisão (CFTV) para monitorar os trabalhadores, pois essas podem ser usadas para verificar o uso adequado de EPIs. Alguns trabalhos presentes na literatura abordam o problema de verificação automática de EPIs usando imagens de CFTV como entrada; no entanto, muitos destes trabalhos não conseguem lidar com a detecção de uso seguro de múltiplos equipamentos e outros até mesmo pulam a fase de verificação, fazendo apenas a detecção. Neste trabalho, propomos um novo componente de análise de segurança cognitiva para um sistema de monitoramento. Este componente atua para detectar o uso adequado de EPIs em tempo real, usando fluxo de dados de câmeras de CFTV comuns. Construímos este componente do sistema com base nas melhores técnicas de Aprendizado Profundo voltadas para a tarefa de detecção de objetos. A metodologia proposta é robusta com resultados consistentes e promissores em termos da métrica Mean Average Precision (mAP) e pode atuar em tempo real.