[pt] ANÁLISE DINÂMICA NÃO LINEAR DE PÓRTICOS COM BASE ELASTO-PLÁSTICA SOB AÇÃO SÍSMICA

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: LUIS FERNANDO PAULLO MUNOZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27610&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27610&idi=2
http://doi.org/10.17771/PUCRio.acad.27610
Resumo: [pt] A resposta dinâmica de sistemas estruturais não lineares tem sido um item de grande interesse nas pesquisas em engenharia civil. Problemas onde há interação base flexível-estrutura são de grande importância na análise estrutural, já que a maioria das estruturas civis é apoiada sobre sistemas flexíveis (solo ou sistemas de apoio com dissipação de energia). Nesta área, o estudo de sistemas submetidos a ações sísmicas é um tópico relevante, já que estas solicitações têm um grande conteúdo de frequências, o que pode influenciar consideravelmente as respostas da estrutura. Neste contexto, o conhecimento da resposta em frequência de estruturas não lineares sob uma excitação de base é uma ferramenta útil para avaliar os potenciais efeitos de ações sísmicas sobre estes sistemas. Na presente tese é desenvolvida uma metodologia de análise não linear dinâmica de sistemas estruturais reticulados sob excitações de base, considerando não linearidade geométrica e apoios flexíveis, representados por molas unidimensionais, com comportamento elasto-plástico. Através de uma análise paramétrica é avaliada a variabilidade das respostas de sistemas esbeltos submetidos a ações sísmicas reais, sismos artificiais, assim como ações sísmicas sucessivas. O problema no espaço é resolvido pelo método dos elementos finitos. Para a análise em frequência, é apresentada uma metodologia baseada no método do balanço harmônico e no método de Galerkin, juntamente com técnicas de continuação para a obtenção das curvas de ressonância não lineares. O problema no tempo é abordado através da integração das equações de movimento pelos métodos de Runge-Kutta e Newmark, associado ao método de Newton-Raphson.