[pt] DESENVOLVIMENTO E VALIDAÇÃO DE UM SISTEMA DE AQUISIÇÃO DE DADOS DE BAIXO CUSTO PARA PREVISÃO DE CURTÍSSIMO PRAZO DA POTÊNCIA FOTOVOLTAICA
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47953&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47953&idi=2 http://doi.org/10.17771/PUCRio.acad.47953 |
Resumo: | [pt] Dado o recente aumento da adoção de fontes renováveis de energia, é essencial reavaliar os sistemas tradicionais de energia. A intermitência pode causar diversos problemas ligados à qualidade e eficiência energética. O objetivo desta dissertação de mestrado é desenvolver uma ferramenta capaz de subsidiar modelos de previsão solar para aplicações visando a melhoria da operação em tempo real. O atual paradigma de previsão solar sub-horária consiste em usar imagens celestiais para prever a cobertura nebulosa para curtos horizontes temporais. Visando desenvolver um modelo mais exato, é necessária a utilização de componentes determinísticos, como a temperatura e o ângulo de incidência dos raios solares, em conjunto com a modelagem dos efeitos estocásticos das nuvens. Visto que o objetivo da previsão sub-minuto é permitir que se lide com variações de alta frequência, os dados devem possuir informação condizente com estas frequências. Por esse motivo foi feita a coleta de dados por exclusão. O sistema captura dados a cada 1 s e, quando detecta uma mudança suficientemente grande na potência do painel, salva essa informação, 10 s para trás até 4 s à frente da perturbação detectada. Os dados, depois de pré-processados, foram usados para treinar uma rede neural para determinar a relevância dos dados. Com cuidadosa seleção de atributos e arquitetura de rede, o modelo apresentou boa regressão com R2 maior que 0.93 para ambas variáveis testadas com horizonte de 60 s à frente. Concluindo, portanto, que os dados obtidos são relevantes para previsões de até 60 s à frente. |