[pt] INCERTEZA DE MEDIÇÃO EM REDES NEURAIS ARTIFICIAIS APLICADAS À MANUTENÇÃO PREDITIVA DE TRANSFORMADORES

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: CHRISTIANE SAMPAIO DE ALMEIDA GUSMAN
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19358&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19358&idi=2
http://doi.org/10.17771/PUCRio.acad.19358
Resumo: [pt] Diversas pesquisas sobre monitoramento e diagnóstico de equipamentos do sistema elétrico foram iniciadas com o objetivo de elevar a garantia e confiabilidade no sistema. Autores, não somente no Brasil, desenvolveram pesquisas sobre o tema, dentre eles (Bengtson, 1996; Kovacevic & Dominelli, 2003; Freitas, 2000). O objetivo é garantir a confiabilidade dos equipamentos instalados e incrementar o desempenho aumentando a vida útil dos mesmos. Nesse contexto (Freitas, 2000; Cavaleiro, 2003; dentre outros) discorrem sobre o tema. As redes neurais artificiais são utilizadas como uma das possíveis ferramentas disponíveis para análise, diagnóstico e monitoramento de equipamentos. A inovação deste trabalho está em apresentar uma nova metodologia desenvolvida para analisar a propagação das incertezas de medição das variáveis de entrada em redes neurais artificiais aplicadas à Manutenção Preditiva de Transformadores. Com base nos conceitos da metrologia foram analisados não somente os dados de entrada como também a incerteza de medição associadas aos mesmos. O método desenvolvido permite que se estime a incerteza de medição das variáveis de saída, contribuindo para a avaliação da confiabilidade de modelagens baseadas em redes neurais. Também foi realizado um estudo de caso, no qual se avaliou a propagação das incertezas de medição em sete redes neurais destinadas a estimar a concentração dos gases (saídas das redes) dissolvidos no óleo de transformadores de potência, com base nas características físico-químicas do óleo (variáveis de entrada). A metodologia utilizada baseou-se na introdução de perturbações na entrada das redes analisadas e na consequente análise de como estas perturbações afetam a saída das redes, permitindo-se assim calcular os coeficientes de sensibilidade de cada entrada. Em seguida, combinando-se as incertezas de medição das variáveis de entrada (disponíveis nos certificados de calibração dos instrumentos utilizados nas respectivas medições), por meio dos coeficientes de sensibilidade, é possível estimar a incerteza de medição das variáveis de saída.