Rede neural recorrente para previsão de curto prazo da usina fotovoltaica de 540 kWp da USP

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Fonseca, Wellington Winicius Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/106/106134/tde-05102021-143524/
Resumo: O desenvolvimento de modelos de previsão de energia está entre as principais estratégias para manter um rápido crescimento de energias renováveis intermitentes, como a Solar Fotovoltaica (FV), ao mesmo tempo que auxilia na mitigação de desafios relacionados à gestão de sistemas conectados à rede. Neste trabalho, um método estatístico baseado em Rede Neural Recorrente (RNN) foi desenvolvido para prever uma, duas e três horas futuras da produção de energia de uma usina fotovoltaica conectada à rede de 540 kWp, instalada no Instituto de Energia e Meio Ambiente do Universidade de São Paulo (USP). As entradas padrão do modelo RNN são dados meteorológicos, dados ambientais e série temporal da produção de energia da usina FV. A série histórica foi dividida em meses secos (abril a setembro) e chuvosos (outubro a março). Este trabalho também visa avaliar a influência do aerossol atmosférico como preditor do modelo de previsão. Assim, dados de reanálise de Profundidade Óptica de Aerossol (AOD) interpolados de hora em hora a partir do modelo MERRA-2 foram incluídos como entrada adicional em um segundo modelo RNN. Um algoritmo de força bruta determinou a arquitetura de três camadas ocultas com trinta neurônios cada. A mesma arquitetura foi aplicada para todos os horizontes de tempo avaliados, bem como com ou sem dados AOD. A precisão dos modelos RNN de previsão foi avaliada por meio do erro quadrático médio (MSE), raiz do erro quadrático médio nominal (NRMSE) e Skill Score (SSMSE) em comparação com um modelo de persistência smart. Os modelos desenvolvidos apresentaram RMSE variando entre 4,53% e 7,24% para os meses secos e 5,93% e 8,1% para os meses chuvosos. O método aplicado neste trabalho superou de forma consistente o modelo de persistência para todos os cenários avaliados, especialmente durante os meses chuvosos, com valores de SSMSE observados variando entre 0,67 e 0,92. Finalmente, a inclusão de dados de AOD resultou no aumento do SSRMSE em 2,27% no desempenho do modelo de previsão durante os meses secos.