[en] GARCH MODELS IDENTIFICATION USING COMPUTATIONAL INTELLIGENCE
Ano de defesa: | 2010 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14872&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14872&idi=2 http://doi.org/10.17771/PUCRio.acad.14872 |
Resumo: | [pt] Os modelos ARCH e GARCH vêm sendo bastante explorados tanto tecnicamente quanto em estudos empíricos desde suas respectivas criações em 1982 e 1986. Contudo, o enfoque sempre foi na reprodução dos fatos estilizados das séries financeiras e na previsão de volatilidade, onde o GARCH(1,1) é o mais utilizado. Estudos sobre identificação dos modelos GARCH são muito raros. Diante desse contexto, este trabalho propõe um sistema inteligente para melhorar a identificação da correta especificação dos modelos GARCH, evitando assim o uso indiscriminado dos modelos GARCH(1,1). Para validar a eficácia do sistema proposto, séries simuladas foram utilizadas. Os resultados derivados desse sistema são comparados com os modelos escolhidos pelos critérios de informação AIC e BIC. O desempenho das previsões dos modelos identificados por esses métodos são comparados utilizando-se séries reais. |