[pt] MODELAGEM DO MÓDULO DE YOUNG EM NANOCOMPÓSITOS ATRAVÉS DE INTELIGÊNCIA COMPUTACIONAL

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: LEANDRO FONTOURA CUPERTINO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15391&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15391&idi=2
http://doi.org/10.17771/PUCRio.acad.15391
Resumo: [pt] Materiais compósitos são a base de muitos produtos, devido à sua capacidade de aperfeiçoar certas propriedades. Recentemente, a utilização de nanocargas na fabricação de compósitos vem sendo amplamente estudada, pois a partir de concentrações baixas de nanocargas, as propriedades começam a melhorar, possibilitando a criação de materiais leves e com uma grande gama de propriedades. Uma das propriedades mecânicas mais estudadas é o módulo de Young, que mensura a rigidez de um material. Alguns dos modelos existentes para essa propriedade em nanocompósitos pecam na precisão ou são limitados em função da fração máxima de nanopartículas admissível no modelo. Outros se adequam apenas a uma determinada combina ção de matriz/carga preestabelecida. O objetivo deste trabalho é utilizar Redes Neurais Artificiais como um aproximador capaz de modelar tal propriedade para diversas matrizes/cargas, levando em consideração suas características, sem perder a precisão. A validação do aproximador é realizada comparando o resultado com outros modelos propostos na literatura. Uma vez validada, utiliza-se Algoritmos Genéticos em conjunto com tal rede para definir qual seria a configuração ideal para três casos de estudo: um que maximize o valor do módulo de Young, outro que maximize o módulo relativo e um terceiro que maximize o módulo relativo e minimize a quantidade de carga utilizada, diminuindo os custos de projeto. As técnicas de Inteligência Computacional empregadas na modelagem e síntese de materiais nanoestruturados se mostraram boas ferramentas, uma vez que geraram uma boa aproximação dos dados utilizados com erros inferiores a 5%, além de possibilitarem a determinação dos parâmetros de síntese de um material com o módulo de Young desejado.