[en] OPTIMIZATION OF DUAL FUEL OPERATION IN INTERNAL COMBUSTION ENGINES USING ARTIFICIAL INTELLIGENCE

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: MIGUEL ANGEL LEON MOZO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14548&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14548&idi=2
http://doi.org/10.17771/PUCRio.acad.14548
Resumo: [pt] O objetivo deste trabalho é predizer e otimizar o desempenho de motores funcionando no modo bicombustível, diesel-gás natural, fazendo uso da inteligência artificial. Pretende-se determinar a taxa de substituição ótima do combustível original diesel pelo gás natural que minimize custos de operação (combustíveis) e emissões de poluentes, tais como: monóxido de carbono, CO, hidrocarbonetos, HC, e óxidos de nitrogênio, NOx, priorizando-se também a eficiência térmica. Os dados analisados foram obtidos de testes anteriormente realizados. O procedimento envolve treinamento, validação e teste (utilizando redes neurais). Com os dados analisados foram treinadas diferentes redes neurais 06 para a aprendizagem e predição, as quais vão prever mapas de novos valores baseando-se nos dados experimentais já apreendidos. Finalmente, e continuando com o processo de otimização (técnica de Algoritmos Genéticos), é determinada a melhor taxa de substituição de diesel-gás natural, com as menores taxas de emissões dentro dos mapas gerados. Os resultados indicam uma boa concordância entre os dados experimentais e os previstos pela rede neural. O processo de otimização utilizado determina os pontos de trabalho adequados para cada caso analisado.