[pt] AVALIAÇÃO DA CONFIABILIDADE DE SISTEMAS DE GERAÇÃO E TRANSMISSÃO VIA SIMULAÇÃO MONTE CARLO OTIMIZADA POR TÉCNICAS DE REDUÇÃO DE VARIÂNCIA E APRENDIZADO DE MÁQUINA

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: BRUNO ALVES DE SA MANSO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=71881&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=71881&idi=2
http://doi.org/10.17771/PUCRio.acad.71881
Resumo: [pt] A simulação Monte Carlo (SMC) é uma ferramenta eficiente na análise da confiabilidade de grandes sistemas compostos de geração e transmissão. Na prática, porém, os planejadores têm maior interesse em avaliar apenas suas regiões de atuação, que geralmente englobam um conjunto reduzido de barras consumidoras. Nesse caso, a falha de suprimento (i.e., corte de carga) é muitas vezes um evento raro, o que eleva substancialmente o custo computacional da SMC. Para lidar com essa situação, o emprego de técnicas de redução de variância foi proposto em inúmeros trabalhos, os quais apresentam bons resultados, mas ainda encontram alguma dificuldade em modelar as restrições físicas da rede de transmissão. Técnicas de inteligência computacional também foram empregadas no intuito de aumentar a eficiência de algoritmos de confiabilidade composta. A abordagem por aprendizado de máquina engloba a maioria dessas técnicas. Em geral, sua tarefa é reduzir diretamente execuções de análise de adequação de estados por meio de classificadores. Tais classificadores precisam ser treinados a partir de amostras com boa representação da falha, o que restringe sua aplicação, tendo em vista que a falha de interesse dos agentes de um sistema é, em geral, um evento raro. Neste trabalho, propõe-se uma nova aplicação da técnica amostragem por importância, via método da entropia cruzada, que modela adequadamente as restrições da rede de transmissão. Adicionalmente, buscando melhorar ainda mais o desempenho da ferramenta, propõe-se acoplar um classificador de estados para diferenciá-los em estados de falha ou de sucesso estressado (i.e., estados de sucesso em que o sistema/área/barra está próximo de falhar). A técnica de simulação empregada é a SMC quasi-sequencial com o intuito de devidamente modelar fontes renováveis. O método proposto é avaliado por meio de uma versão modificada do IEEE Reliability Test System - 1996, que apresenta características de falha composta semelhantes às de sistemas reais.