[en] STOCHASTIC VOLATILITY VIA MONTE CARLO LIKELIHOOD: A COMPARATIVE STUDY
Ano de defesa: | 2004 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4920&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4920&idi=2 http://doi.org/10.17771/PUCRio.acad.4920 |
Resumo: | [pt] Esta dissertação discute o modelo de Volatilidade Estocástica (SV) estimado via metodologia Durbin & Koopman, chamada Verossimilhança de Monte Carlo( MCL). Comparou-se a cobertura condicional do valor em risco (VaR), deste modelo, com as do modelo GARCH(1,1) e SV estimado via Quasi Máxima Verossimilhança (QML). Os modelos foram estendindos a distúrbios Gaussiano e t-Student na equação da média. O desempenho dos modelos foi avaliado fora da amostra para retornos diários dos índices Ibovespa, S&P500, Nasdaq e Dow Jones. Para o critério de avaliação foi utilizado o teste de Christoffersen. Foram econtradas evidências empíricas de que o modelo SV estimado via MCL é tão eficiente quanto o modelo GARCH(1,1), em termos da cobertura condicional do VaR. |