Técnicas de amostragem inteligente em simulação de Monte Carlo

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Santos, Ketson Roberto Maximiano dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-02042014-150820/
Resumo: A confiabilidade de estruturas apresenta sólidos desenvolvimentos teóricos e crescentes aplicações práticas. Durante os últimos anos, avanços significativos foram obtidos em termos dos métodos de transformação (FORM, SORM), bem como em termos das técnicas de simulação de Monte Carlo. Métodos de transformação se mostraram eficientes para problemas de dimensões e não-linearidades moderadas. Já técnicas de simulação sempre permitiram a solução de problemas de grandes dimensões e fortemente não lineares, embora o custo computacional possa ser uma séria limitação. Com o avanço da capacidade de processamento dos computadores e com o desenvolvimento de técnicas de amostragem inteligente, a simulação de Monte Carlo passa a ser cada vez mais viável. Este trabalho tem por objetivo estudar e programar em computador técnicas de amostragem inteligente em simulação de Monte Carlo. O StRAnD é um programa de computador que já possui implementadas as técnicas de simulação de Monte Carlo Bruto e com Amostragem por Importância, ambas utilizando a Amostragem Simples na geração das variáveis básicas. Assim, são adicionadas, ao StRAnD, as técnicas de Amostragem Assintótica, Amostragem Melhorada e Simulação de Subconjuntos. Além disso, são programadas as técnicas de Amostragem por Hipercubo Latino e Amostragem por Variáveis Antitéticas. Nesta dissertação, são analisados seis problemas distintos, de forma que as vantagens e desvantagens de cada técnica sejam avaliadas, em termos da probabilidade de falha, do coeficiente de variação da probabilidade de falha, do erro relativo da probabilidade de falha e do tempo de processamento.