[en] A THEORY BASED, DATA DRIVEN SELECTION FOR THE REGULARIZATION PARAMETER FOR LASSO
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51983&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51983&idi=2 http://doi.org/10.17771/PUCRio.acad.51983 |
Resumo: | [pt] O presente trabalho apresenta uma nova forma de selecionar o parâmetro de regularização do LASSO e do adaLASSO. Ela é baseada na teoria e incorpora a estimativa da variância do ruído. Nós mostramos propriedades teóricas e simulações Monte Carlo que o nosso procedimento é capaz de lidar com mais variáveis no conjunto ativo do que outras opções populares para a escolha do parâmetro de regularização. |