Algoritmos para geração da frente de Pareto da regressão Lasso

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Machado, Gabriel de Oliveira lattes
Orientador(a): Freire, Wilhelm Passarella lattes
Banca de defesa: Mazorche, Sandro Rodrigues lattes, Franco, Hernando José Rocha
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Mestrado Acadêmico em Matemática
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/15302
Resumo: Problemas de modelagem podem envolver um número muito elevado de variáveis de entrada, principalmente quando estamos interessados em estudar dados experimentais e obter um modelo explicativo para um certo fenômeno ou evento a partir destes. Em geral, deseja-se que o modelo seja interpretável e que seja possível obter uma conclusão clara sobre a relação de cada variável explicativa com a resposta, onde um número muito grande de variáveis pode dificultar tal interpretação. A utilização da regressão Lasso é uma opção viável para obter modelos com um menor número de variáveis de entrada, enquanto mantendo a precisão obtida pelos mesmos. No entanto, a geração de modelos a partir do Lasso exige maior esforço computacional quando comparado a outros métodos, e por esse motivo é importante que o processo de geração destes modelos seja eficiente. Nesse estudo, realizamos a análise de diferentes algoritmos para a geração de modelos a partir do Lasso, bem como formas de reduzir o esforço computacional quando desejamos obter diversos modelos, para diferentes valores do parâmetro de regularização, para um dado problema, por meio da aproximação da frente de Pareto do Lasso.