[en] A DATA SCIENCE APPROACH TO ANALYZING THE IMPACT OF COGNITIVE RISK-SEEKING BIAS ON INDIVIDUAL DECISION-MAKING INVOLVING FINANCIAL LOSSES

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: LEONARDO FREITAS SAYAO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67533&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67533&idi=2
http://doi.org/10.17771/PUCRio.acad.67533
Resumo: [pt] O estudo da tomada de decisões tem ganhado cada vez mais importância, desde as concepções clássicas do homem econômico até os mais recentes conceitos da racionalidade limitada e dos vieses cognitivos. Ao longo do tempo, a crescente complexidade das decisões impulsionou o desenvolvimento de tecnologias como os Sistemas de Apoio à Decisão e Modelos Preditivos, destacando-se mais recentemente a incorporação de técnicas do campo da Inteligência Artificial, e mais precisamente de Aprendizado de Máquina, para melhorar a precisão e a eficiência das tomadas de decisão. Entretanto, por maior que tenham sido os benefícios proporcionados pelos avanços no apoio computacional, as decisões são, em última análise, tomadas por humanos. E, sendo uma tarefa essencialmente humana, a influência dos vieses cognitivos em tomadas de decisão são um desafio relevante e pouco explorado. Esses vieses podem ser decorrentes de diversos fatores, incluindo preferências individuais, influências externas e derivações cognitivas inconscientes. Apesar dos esforços da área da Economia Comportamental em identificar e modelar esses vieses, seu impacto em contextos de decisões monetárias ainda é limitado. Portanto, este trabalho propõe uma arquitetura baseada em fundamentos ontológicos para identificar e analisar o impacto de vieses cognitivos em cenários de alto risco de perdas monetárias. Através da aplicação de técnicas de Ciência de Dados e Aprendizado de Máquina, o objetivo é propor uma metodologia implementada em um artefato computacional, capaz de automaticamente identificar padrões de vieses cognitivos a partir de um histórico de registros de decisões, gerando conhecimento sobre as preferências de risco dos tomadores de decisão e seus ganhos e perdas diante das suas escolhas. O viés específico explorado neste estudo é a Busca de Risco no domínio de perdas, conforme definido no Padrão Quádruplo do Kahneman. A avaliação da eficácia dessa proposta será realizada por meio de um estudo de caso utilizando um benchmark disponível na literatura, fornecendo insights sobre a aplicabilidade e os benefícios práticos da arquitetura proposta.