[en] IMAGE SEGMENTATION ON GPUS: A PARALLEL APPROACH TO REGION GROWING
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=21699&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=21699&idi=2 http://doi.org/10.17771/PUCRio.acad.21699 |
Resumo: | [pt] Ultimamente, sensores orbitais de alta resolução espacial estão fornecendo uma quantidade crescente de dados sobre a superfície da Terra. A análise destes dados implica em uma alta carga computacional, que tem motivado pesquisas envolvendo hardwares e softwares mais eficientes para estas aplicações. Neste contexto, uma questão importante reside na segmentação de imagens que envolve longos tempos de processamento e é etapa fundamental na análise de imagens baseada em objetos. Os avanços recentes das modernas unidades de processamento gráfico ou GPUs abriram a possibilidade de se explorar a capacidade de processamento paralelo para melhorar o desempenho da segmentação. Este trabalho apresenta uma versão paralela do algoritmo de segmentação multicritério, introduzido originalmente por Baatz e Schappe (2000), concebido para ser executado por GPUs. A arquitetura do hardware subjacente consiste em um sistema massivamente paralelo com múltiplos elementos processadores projetado especialmente para o processamento de imagens. O algoritmo paralelo é baseado no processamento de cada pixel em uma diferente linha de controle (thread) de modo a aproveitar a capacidade paralela da GPU. Esta dissertação também sugere alterações no cálculo de heterogeneidade do algoritmo, o que aumenta o desempenho computacional da segmentação. Os experimentos com o algoritmo paralelo proposto apresentaram uma aceleração maior do que 7 em relação à versão sequencial. |