[en] ARTIFICIAL NEURAL NETWORKS IN TIME SERIES FORECASTING

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: ANTONIO JORGE GOMES ABELEM
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8489&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8489&idi=2
http://doi.org/10.17771/PUCRio.acad.8489
Resumo: [pt] Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na previsão de séries temporais, em particular de séries financeiras, consideradas uma classe especial de séries temporais, caracteristicamente ruídos e sem periodicidade aparente. O trabalho envolve quatro partes principais: um estudo sobre redes neurais artificiais e séries temporais; a modelagem das RNAs para previsão de séries temporais; o desenvolvimento de um ambiente de simulação; e o estudo de caso. No estudo sobre Redes Neurais Artificiais e séries temporais fez-se um levantamento preliminar das aplicações de RNAs na previsão de séries. Constatou-se a predominância do uso do algoritmos de retropropagação do erro para o treinamento das redes, bem como dos modelos estatísticos de regressão, de médias móveis e de alisamento exponencial nas comparações com os resultados da rede. Na modelagem das RNAs de retropropagação do erro considerou-se três fatores determinantes no desempenho da rede: convergência, generalização e escalabilidade. Para o controle destes fatores usou-se mecanismos como; escolha da função de ativação dos neurônios - sigmóide ou tangente hiperbólica; escolha da função erro - MSE (Mean Square Error) ou MAD (Mean Absolutd Deviation); e escolha dos parâmetros de controle do gradiente descendente e do temapo de treinamento - taxa de aprendizado e termo de momento. Por fim, definiu-se a arquitetura da rede em função da técnica utilizada para a identificação de regularidades na série (windowing) e da otimização dos fatores indicadores de desempenho da rede. O ambiente de simulação foi desenvolvido em linguagem C e contém 3.600 linhas de códigos divididas em três módulos principais: interface com o usuário, simulação e funções secundárias. O módulo de interface com o usuário é responsável pela configuração e parametrização da rede, como também pela visualização gráfica dos resultados; módulo de simulação executa as fases de treinamento e testes das RNAs; o módulo de funções secundárias cuida do pré/pós-processamento dos dados, da manipulação de arquivos e dos cálculos dos métodos de avaliação empregados. No estudo de caso, as RNAs foram modeladas para fazer previsões da série do preço do ouro no mercado internacional. Foram feitas previsões univariadas single e multi-step e previsões multivariadas utilizando taxas de câmbio de moedas estrangeiras. Os métodos utilizandos para a avaliação do desempenho da rede foram: coeficiente U de Theil, MSE (Mean Square Error), NRMSE (Normalized Root Mean Square Error), POCID (Percentage Of Change In Direction), scattergram e comparação gráfica. Os resultados obtidos, além de avaliados com os métodos acima, foram comparados com o modelo de Box-Jenkins e comprovaram a superioridade das RNAs no tratamento de dados não-lineares e altamente ruidosos.