[en] NEURAL EXPERT WEIGHTING

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: RAFAEL DE OLIVAES VALLE DOS SANTOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=20153&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=20153&idi=2
http://doi.org/10.17771/PUCRio.acad.20153
Resumo: [pt] Diversos resultados empíricos na área de séries temporais indicam que combinar previsores (experts) é, em média, melhor que tentar selecionar um único modelo de previsão. Na medida em que se decide por um esquema de combinação linear, há vários métodos disponíveis para determinar o quanto cada previsor deve contribuir para a resposta consensual, ou em outras palavras, quais devem ser os pesos dos previsores envolvidos. Em um primeiro momento, este trabalho explora o uso prático de diversos métodos tradicionais de ponderação para combinação linear de previsores. Em seguida, propõe um novo sistema para geração de pesos, especialmente projetado para a melhoria do desempenho nas previsões múltiplos passos a frente. O sistema, batizado de Ponderação Neural de Experts (NEW – Neural Expert Weighting), gera modelos de ponderação dinâmica baseados em redes neurais. As redes neurais oferecem a robustez necessária para a simulação de funções de ponderação de alto desempenho, derivadas de um ou mais métodos tradicionais de geração de pesos. O sistema NEW foi avaliado em diversos experimentos comparativos, contemplando 13 séries temporais divididas em dois estudos de casos – derivados do petróleo e competição NN3, uma competição entre metodologias de previsão baseadas em inteligência computacional. Os resultados obtidos foram considerados promissores.