[pt] COBERTURAS DE REGIÕES TRIDIMENSIONAIS POR DOMINÓS

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: PEDRO HENRIQUE MILET PINHEIRO PEREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25660&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25660&idi=2
http://doi.org/10.17771/PUCRio.acad.25660
Resumo: [pt] Nessa tese, consideramos coberturas de regiões tridimensionais por dominós, especialmente as da forma D x [0,N]. Em particular, nós investigamos as componentes conexas do espaço de coberturas desse tipo de região por flips, o movimento local que consiste em remover dois dominós paralelos adjacentes e colocá-los de volta na única outra posição possível. Para regiões da forma D x [0,2], nós definimos um invariante polinomial Pt(q) que caracteriza coberturas que estão quase na mesma componente conexa, num sentido discutido na tese. Também provamos que o espaço de coberturas desse tipo de região é conexo por flips e trits, um movimento local que consiste em remover três dominós adjacentes e ortogonais entre si e colocá-los de volta na única outra posição possível. No caso geral, o invariante é um inteiro, o twist, para o qual damos uma fórmula combinatória simples, bem como uma interpretação via teoria dos nós; também provamos que o twist tem propriedades aditivas para decomposições adequadas de uma região. Por fim, investigamos também o conjunto de valores que são twists de coberturas de uma caixa L x M x N.