Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Paulo Castalonga, João |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/7529
|
Resumo: |
Seja M uma matróide conexa e e um elemento de M tal que M/e seja conexa. Seja CeM o conjunto dos elementos de M que contém e, veM o tamanho de uma maior subfamília Ce na qual cada dois membros se encontram somente em e e 0eM o tamanho de uma maior subfamília de CeM que cobre M. Lemos e Oxley demonstraram que veM + 0eM < r*M + 2, e, em particular, veM + 0eM < r*M + 1 se M não possui um menor F7 usando e. O objetivo deste trabalho é apresentar a prova para tal teorema, bem como a teoria necessária para seu entendimento e algumas de suas consequências. Em paricular, o trabalho inclui alguns resultados importantes em conectividade em matróides(especialmente em 3-connectividade), e, como consequência do teorema principal, um teorema de Seymour, o qual diz que, em uma matróide conexa M, a soma do tamanho de uma maior família de circuitos disjuntos com o tamanho de uma menor família cobrindo M é, no máximo, r*M + 1 |