[pt] DESENVOLVIMENTO DE MODELOS PARA PREVISÃO DE QUALIDADE DE SISTEMAS DE RECONHECIMENTO DE VOZ

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: BERNARDO LINS DE ALBUQUERQUE COMPAGNONI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55883&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55883&idi=2
http://doi.org/10.17771/PUCRio.acad.55883
Resumo: [pt] Spoken Dialogue Systems (SDS s) são sistemas baseados em computadores desenvolvidos para fornecerem informações e realizar tarefas utilizando o diálogo como forma de interação. Eles são capazes de reconhecimento de voz, interpretação, gerenciamento de diálogo e são capazes de ter uma voz como saída de dados, tentando reproduzir uma interação natural falada entre um usuário humano e um sistema. SDS s provém diferentes serviços, todos através de linguagem falada com um sistema. Mesmo com todo o desenvolvimento nesta área, há escassez de informações sobre como avaliar a qualidade de tais sistemas com o propósito de otimização do mesmo. Com dois destes sistemas, BoRIS e INSPIRE, usados para reservas de restaurantes e gerenciamento de casas inteligentes, diversos experimentos foram conduzidos no passado, onde tais sistemas foram utilizados para resolver tarefas específicas. Os participantes avaliaram a qualidade do sistema em uma série de questões. Além disso, todas as interações foram gravadas e anotadas por um especialista.O desenvolvimento de métodos para avaliação de performance é um tópico aberto de pesquisa na área de SDS s. Seguindo a idéia do modelo PARADISE (PARAdigm for DIalogue System Evaluation – desenvolvido pro Walker e colaboradores na AT&T em 1998), diversos experimentos foram conduzidos para desenvolver modelos de previsão de performance de sistemas de reconhecimento de voz e linguagem falada. O objetivo desta dissertação de mestrado é desenvolver modelos que permitam a previsão de dimensões de qualidade percebidas por um usuário humano, baseado em parâmetros instrumentalmente mensuráveis utilizando dados coletados nos experimentos realizados com os sistemas BoRIS e INSPIRE , dois sistemas de reconhecimento de voz (o primeiro para busca de restaurantes e o segundo para Smart Homes). Diferentes algoritmos serão utilizados para análise (Regressão linear, Árvores de Regressão, Árvores de Classificação e Redes Neurais) e para cada um dos algoritmos, uma ferramenta diferente será programada em MATLAB, para poder servir de base para análise de experimentos futuros, sendo facilmente modificado para sistemas e parâmetros novos em estudos subsequentes.A idéia principal é desenvolver ferramentas que possam ajudar na otimização de um SDS sem o envolvimento direto de um usuário humano ou servir de ferramenta para estudos futuros na área.