[pt] MODELO STAR-TREE DE TRANSIÇÃO SUAVE ESTRUTURADO EM ÁRVORE PARA PREVISÃO DE ENERGIA EÓLICA

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: GLAUCIA ESTEFANIA DE SOUSA FERREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55671&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55671&idi=2
http://doi.org/10.17771/PUCRio.acad.55671
Resumo: [pt] O principal objetivo desta dissertação é estudar modelos de previsão da geração eólica utilizando os dados de cinco parques eólicos, mais precisamente comparar o desempenho dos modelos lineares e não lineares. Utilizando a metodologia do modelo não-linear STAR-TREE (Smooth Transition AutoRegression Tree) e comparando com o modelo linear Box e Jenkins através de medidas estatísticas. Basicamente, o modelo STAR-TREE é uma combinação dos modelos STAR (Smooth Transition AutoRegression) e CART (Classification and Regression Tree), realizando assim uma modelagem em árvore onde a transição entre os regimes é feita de forma suave através da função logística e nos nós terminais são ajustados modelos preditivos. Neste estudo será ajustado nos nós terminais um modelo simples constante e também modelos autorregressivos.