[pt] MODELAGEM DE CANAIS DE COMUNICAÇÕES DIGITAIS SUJEITOS A ERROS EM SURTOS

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: MARCUS VINICIUS DOS SANTOS FERNANDES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32818&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32818&idi=2
http://doi.org/10.17771/PUCRio.acad.32818
Resumo: [pt] A ocorrência de erros em surto é observada principalmente em canais sem fio. Para a análise e melhor entendimento deste tipo de erro, a fim de se melhorar os projetos de sistemas de comunicações digitais, uma modelagem mais precisa, de canais com esta característica, torna-se necessária. Uma diversidade de métodos de estimação de parâmetros tem sido estudada, principalmente aquelas baseadas nos Modelos Escondidos de Markov (HMM do ingês). Em geral cada método é focado em um sistema de comunicações específico, sobre uma camada específica. Neste trabalho é proposto um novo método baseado em um HMM com uma estrutura particular, que permite a dedução de expressões analíticas para todas as estatísticas de interesse. A estrutura do modelo proposto permite a geração de eventos que ocorrem numa sequência binária de dados sujeita a surtos de erro, de acordo com a definição de surtos de erro do CCITT. O modelo proposto possui um número fixo de apenas sete parâmetros, mas o seu número de estados cresce com um de seus parâmetros, que aumenta a precisão, mas não a complexidade. Este trabalho adotou técnicas de otimização, associadas aos métodos de Máxima Verossimilhança e Particle Swarm Optimization (PSO) a fim de realizar a estimação dos parâmetros do modelo proposto. Os resultados demonstram que o modelo proposto permite a caracterização precisa de canais com memória de diversas origens.