[en] SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: GUILHERME MEIRELLES BODIN DE MORAES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=57291&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=57291&idi=2
http://doi.org/10.17771/PUCRio.acad.57291
Resumo: [pt] Os modelos orientados por score, também conhecidos como modelos generalizados de score autorregressivo (GAS), representam uma classe de modelos de séries temporais orientados por observação. Eles possuem propriedades desejáveis para modelagem de séries temporais, como a capacidade de modelar diferentes distribuições condicionais e considerar parâmetros variantes no tempo dentro de uma estrutura flexível. Neste trabalho, apresentamos ScoreDrivenModels.jl, um pacote Julia de código aberto para modelagem, previsão e simulação de séries temporais usando a estrutura de modelos baseados em score. O pacote é flexível no que diz respeito à definição do modelo, permitindo ao usuário especificar a estrutura de atraso e quais parâmetros são variantes no tempo ou constantes. Também é possível considerar várias distribuições, incluindo Beta, Exponencial, Gama, Lognormal, Normal, Poisson, Student s t e Weibull. A interface fornecida é flexível, permitindo aos usuários interessados implementar qualquer distribuição e parametrização desejada.