[en] AN ASSESSMENT OF PRESENTATION ATTACK DETECTION METHODS FOR FACE RECOGNITION SYSTEMS

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: GUILLERMO ESTRADA DOMECH
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35526&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35526&idi=2
http://doi.org/10.17771/PUCRio.acad.35526
Resumo: [pt] As vulnerabilidades dos Sistemas de Reconhecimento Facial (FRS) aos Ataques de Apresentação (PA) foram recentemente reconhecidas pela comunidade biométrica, mas ainda existe a falta de técnicas faciais de Detecção de Ataque de Apresentação (PAD) baseadas em software que apresentam desempenho robusto em cenários de autenticação realistas. O objetivo principal desta dissertação é analisar, avaliar e comparar alguns dos métodos baseados em atributos do estado-da-arte para PAD facial em uma variedade de condições, considerando três dos bancos de dados de fraude facial publicamente disponíveis 3DMAD, REPLAY-MOBILE e OULU-NPU. No presente trabalho, os métodos de PAD baseados em descritores de texturas LBP-RGB, BSIF-RGB e IQM foram investigados. Ademais, um Autoencoder Convolucional (CAE), um descritor de atributos aprendidos, também foi implementado e avaliado. Também, abordagens de classificação de uma e duas classes foram implementadas e avaliadas. Os experimentos realizados neste trabalho foram concebidos para medir o desempenho de diferentes esquemas de PAD em duas condições: (i) intra-banco de dados e (ii) inter-banco de dados. Os resultados revelaram que a eficácia dos atributos aprendidos pelo CAE em esquemas de PAD baseados na abordagem de classificação de duas classes fornece, em geral, o melhor desempenho em protocolos de avaliação intra-banco de dados. Os resultados também indicam que os esquemas de PAD baseados na abordagem de classificação de uma classe não são inferiores em comparação às suas contrapartes de duas classes nas avaliações inter-banco de dados.