[en] ITERATIVE METHODS FOR ROBUST CONVEX OPTIMIZATION

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: THIAGO DE GARCIA PAULA S MILAGRES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47228&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47228&idi=2
http://doi.org/10.17771/PUCRio.acad.47228
Resumo: [pt] Otimização Robusta é uma das formas mais comuns de considerar in- certeza nos parâmetros de um problema de otimização. A forma tradicional de achar soluções robustas consiste em resolver a contraparte robusta de um problema, o que em muitos casos, na prática, pode ter um custo computacional proibitivo. Neste trabalho, estudamos métodos iterativos para resolver problemas de Otimização Convexa Robusta de forma aproximada, que não exigem a formulação da contraparte robusta. Utilizamos conceitos de Online Learning para propor um novo algoritmo que utiliza agregação de restrições, demonstrando garantias teóricas de convergência. Desenvolvemos ainda uma modificação deste algoritmo que, apesar de não possuir tais garantias, obtém melhor performance prática. Por fim, implementamos outros métodos iterativos conhecidos da literatura de Otimização Robusta e fazemos uma análise computacional de seus desempenhos.