[en] ALGORITHMS FOR ONLINE PORTFOLIO SELECTION PROBLEM

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: CHARLES KUBUDI CORDEIRO E SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37745&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37745&idi=2
http://doi.org/10.17771/PUCRio.acad.37745
Resumo: [pt] A otimização online de portfólios é um problema de engenharia financeira que consiste na escolha sequencial de alocação de capital entre um conjunto de ativos, com o objetivo de maximizar o retorno acumulado no longo prazo. Com o avanço dos estudos de modelos de machine learning, diversos algorítmos estão sendo utilizados para resolver esse problema. Uma série de algoritmos seguem a metodologia Follow-the-winner (FTW) , onde o peso de ações com boa performance é aumentado baseado na hipótese de que a tendência de alta será mantida; outros seguem a metodologia inversa Follow-the-loser (FTL), em que ações com má performance tem seu peso aumentado apostando em uma reversão dos preços. Algoritmos estado-da-arte do tipo FTW possuem garantia teórica de se aproximar da performance da melhor ação escolhida de antemão, entretanto, algoritmos do tipo FTL tem performance superior observada empiricamente. Nosso trabalho busca explorar a ideia de aprender quando utilizar cada uma das duas categorias. Os mecanismos utilizados são algoritmos de online learning com flexibilidade para assumir ambos comportamentos. Foi realizado um estudo da literatura sobre indicadores de memória em séries financeiras e sua possível utilização de forma explícita para escolha entre FTL e FTW. Posteriormente, propomos um método de se realizar o aprendizado entre essas duas categorias de forma online e de forma dinâmica para utilização em algoritmos de online learning. Em nossos experimentos, o método proposto supera o benchmark estabelecido UCRP com excesso de retorno de 36.76 por cento.