[pt] ESTUDO DE HEURÍSTICAS PARA PROBLEMAS DE ESCALONAMENTO EM UM AMBIENTE COM MÁQUINAS INDISPONÍVEIS

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: BRUNO LEONARDO KMITA DE OLIVEIRA PASSOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24311&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24311&idi=2
http://doi.org/10.17771/PUCRio.acad.24311
Resumo: [pt] Grande parte da literatura de problemas de escalonamento assume que todas as máquinas estão disponíveis durante todo o período de análise o que, na prática, não é verdade, pois algumas das máquinas podem estar indisponíveis para processamento sem aviso prévio devido a problemas ou a políticas de utilização de seus recursos. Nesta tese, exploramos algumas das poucas heurísticas disponíveis na literatura para a minimização do makespan para este tipo de problema NP-difícil e apresentamos uma nova heurística que utiliza estatísticas de disponibilidade das máquinas para gerar um escalonamento. O estudo experimental com dados reais mostrou que a nova heurística apresenta ganhos de makespan em relação aos demais algoritmos clássicos que não utilizam informações de disponibilidade no processo de decisão. A aplicação prática deste problema está relacionada a precificação de ativos de uma carteira teórica de forma a estabelecer o risco de mercado da forma mais rápida possível através da utilização de recursos tecnológicos ociosos.