[en] DATA DEBUGGING FOR REAL-TIME POWER SYSTEM MONITORING BASED ON PATTERN ANALYSIS
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8610&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8610&idi=2 http://doi.org/10.17771/PUCRio.acad.8610 |
Resumo: | [pt] Na supervisão em tempo-real de sistemas de potência é fundamental que as informações recebidas do sistema de aquisição de dados não contenham erros. As decisões tomadas durante a operação do sistema se baseiam em análise que utilizam uma base de dados supostamente confiável. A presença de erros nos dados compromete as análises realizadas conseqüentemente as decisões tomadas a partir delas, podendo ocasionar problemas para a operação do sistema. Este trabalho propõe um novo método para a identificação de erros nos dados na supervisão em tempo-real de sistemas de potência. Técnicas de projeção de dados baseadas no mapa de Kohonen são utilizadas para mostrar que as inovações normalizadas, obtidas no estimadores de estado com capacidade de previsão, apresentam excelente capacidade de discriminação de erros quando comparadas a outras variáveis tais como medidas cruas e resíduos normalizados. É proposto um método que trata o problema de identificação de erros de dados como um problema de reconhecimento de padrões, onde as inovações normalizadas são utilizadas como variáveis de entrada para uma rede neural plástica que é responsável por identificar o erro presente. O método é capaz de tratar de forma integrada erros grosseiros nas medidas de erros topológicos envolvendo ramos de transmissão ou barras. Método proposto é testado para várias condições de operação envolvendo os mais diversos tipos de erro, utilizando os sistemas IEEE 24-barras e IEEE 118-barras. O desempenho do método é avaliado e aspectos como eficiência computacional, capacidade de generalização e implementação em tempo-real, entre outros, são também discutidos. |