[pt] ENVELOPE DE PLANOS MÉDIOS

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: ADY CAMBRAIA JUNIOR
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25484&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25484&idi=2
http://doi.org/10.17771/PUCRio.acad.25484
Resumo: [pt] O Envelope de Retas Médias - ERM consiste da união de três conjuntos invariantes afins: o Affine Envelope Symmetry Set - AESS; o Mid-Parallel Tangents Locus - MPTL; e a Evoluta Afim - EA. O ERM de curvas planas convexas é um assunto que tem sido muito explorado. Porém, não existe na literatura nenhum estudo do ERM para superfícies. Por isso, o objetivo principal desta tese é generalizar o ERM de curvas convexas para superfícies convexas. Para tanto, dividimos a tese em duas partes. A primeira consiste de uma revisão sobre a geometria afim de curvas planas e do estudo do ERM com uma nova abordagem. Na segunda parte realizamos uma breve introdução da geometria afim de hipersuperfícies e a generalização do ERM. Na generalização do ERM, trabalhamos com superfícies, definimos os planos médios e estudamos o que denominamos Envelope de Planos Médios -EPM. Provamos que, o EPM assim como o ERM, é formado por três conjuntos invariantes afins: a Superfície de Centros de 3 mais 3-Cônicas - SC3C; o Mid-Parallel Tangents Surface -MPTS; e a Evoluta de Curvas Médias - ECM.