[pt] ENVELOPE DE PLANOS MÉDIOS
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25484&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25484&idi=2 http://doi.org/10.17771/PUCRio.acad.25484 |
Resumo: | [pt] O Envelope de Retas Médias - ERM consiste da união de três conjuntos invariantes afins: o Affine Envelope Symmetry Set - AESS; o Mid-Parallel Tangents Locus - MPTL; e a Evoluta Afim - EA. O ERM de curvas planas convexas é um assunto que tem sido muito explorado. Porém, não existe na literatura nenhum estudo do ERM para superfícies. Por isso, o objetivo principal desta tese é generalizar o ERM de curvas convexas para superfícies convexas. Para tanto, dividimos a tese em duas partes. A primeira consiste de uma revisão sobre a geometria afim de curvas planas e do estudo do ERM com uma nova abordagem. Na segunda parte realizamos uma breve introdução da geometria afim de hipersuperfícies e a generalização do ERM. Na generalização do ERM, trabalhamos com superfícies, definimos os planos médios e estudamos o que denominamos Envelope de Planos Médios -EPM. Provamos que, o EPM assim como o ERM, é formado por três conjuntos invariantes afins: a Superfície de Centros de 3 mais 3-Cônicas - SC3C; o Mid-Parallel Tangents Surface -MPTS; e a Evoluta de Curvas Médias - ECM. |