[en] 1D SEISMIC INVERSION USING SIMULATED ANNEALING

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: JORGE MAGALHAES DE MENDONCA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7536&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7536&idi=2
http://doi.org/10.17771/PUCRio.acad.7536
Resumo: [pt] O problema de Inversão Sísmica envolve a determinação das propriedades físicas da superfície a partir de dados amostrados na superfície. A construção de um modelo matemático da resposta da subsuperfície à excitação de uma fonte sísmica, tendo como parâmetros as propriedades físicas da subsuperfície, fornece um modelo sintético desta resposta para determinados valores dos parâmetros. Isto permite comparar dados amostrados e modelos sintético. A perturbação do modelo pela variação dos seus parâmetros pode aproximar dados amostrados e sintéticos e colocar o problema da Inversão como um problema de minimização de uma função de erro que os ajuste de forma adequada. Usualmente, os métodos que tentam minimizar a medida a medida de erro supõem um comportamento linear entre a perturbação do modelo e esta medida. Na maioria dos problemas geofísicos, esta medida apresenta um alto grau de não linearidade e uma grande quantidade de mínimos locais. Isto torna estes métodos baseados em aproximações lineares muito sensíveis à escolha de uma boa solução inicial, o que nem sempre está disponível. Como resolver este problema sem uma boa solução inicial? A teoria da Inferência Bayesiana oferece uma solução pelo uso de informação a priori sob o espaço dos parâmetros. O problema de Inversão volta então a ser um problema de otimização onde se precisa maximizar a probabilidade a posteriori dos parâmetros assumirem um certo valor dado que se obteve o resultado da amostragem dos dados. Este problema é resolvido pelo método do Simulated Annealing (SA), método de otimização global que faz uma busca aleatória direcionada no espaço de solução. Este método foi proposto por uma analogia entre o recozimento física de sólidos e problemas de otimização. O SA, na sua variante Very Fast Simulated Annealing (VFSA), é aplicado na solução de problemas de Inversão Sísmica 1 D para modelos acústico e elásticos gerados sinteticamente. A avaliação do desempenho do SA usando medidas de erro com diferentes normas é realizada para um modelo elástico adicionado de ruído aleatório.