[en] CLASSIFICATION OF SEISMIC FACIES USING SEISMIC MULTI-ATTRIBUTE
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60895&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60895&idi=2 http://doi.org/10.17771/PUCRio.acad.60895 |
Resumo: | [pt] A interpretação sísmica é um processo fundamental para a exploração de hidrocarbonetos. Essa atividade consiste na identificação de informação geológica através do processamento e análise de dados sísmicos. Com o crescimento acentuado e a complexidade dos dados sísmicos, a análise manual de fácies sísmicas tornou-se um desafio significativo. O mapeamento de fácies sísmicas é um processo demorado e que requer profissionais especializados. O objetivo deste trabalho visa aplicar a classificação multiatributos usando uma rede neural encoder-decoder para mapear as fácies sísmicas e auxiliar no processo de interpretação. Um conjunto de atributos sísmicos, foram calculados utilizando o software Opendtect versão 6.6 a partir dos dados de amplitude contidos no Dataset Facies-Mark . Sendo eles: Energia, Pseudo Relevo, Fase instantânea e Textura, todos foram selecionados por um intérprete. A função de perda utilizada pela rede foi weighted categorical crossentropy, pelo fato das classes serem consideravelmente desbalanceadas. O treinamento foi realizado nas direções inlines e crosslines para as respectivas combinações: atributos, atributo + amplitude, e somente a amplitude. Os resultados baseado na métrica frequency weighted intersection over union (FWIU), mostraram que os atributos junto com a amplitude obtiveram o melhor resultado, 85,73 por cento, em comparação com as outras combinações citadas. Em comparação direta com o trabalho que inspirou essa dissertação, o multiatributos performou melhor. |