[en] DETERMINISTIC ACOUSTIC SEISMIC INVERSION USING ARTIFICIAL NEURAL NETWORKS
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34647&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34647&idi=2 http://doi.org/10.17771/PUCRio.acad.34647 |
Resumo: | [pt] A inversão sísmica é o processo de transformar dados de Sísmica de Reflexão em valores quantitativos de propriedades petroelásticas das rochas. Esses valores, por sua vez, podem ser correlacionados com outras propriedades ajudando os geocientistas a fazer uma melhor interpretação que resulta numa boa caracterização de um reservatório de petróleo. Existem vários algoritmos tradicionais para Inversão Sísmica. Neste trabalho revisitamos a Inversão Colorida (Impedância Relativa), a Inversão Recursiva, a Inversão Limitada em Banda e a Inversão Baseada em Modelos. Todos esses quatro algoritmos são baseados em processamento digital de sinais e otimização. O presente trabalho busca reproduzir os resultados desses algoritmos através de uma metodologia simples e eficiente baseada em Redes Neurais e na pseudo-impedância. Este trabalho apresenta uma implementação dos algoritmos propostos na metodologia e testa sua validade num dado sísmico público que tem uma inversão feita pelos métodos tradicionais. |