[en] DEEP LEARNING NEURAL NETWORKS FOR THE IDENTIFICATION OF AROUSALS RELATED TO RESPIRATORY EVENTS USING POLYSOMNOGRAPHIC EEG SIGNALS
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53044&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53044&idi=2 http://doi.org/10.17771/PUCRio.acad.53044 |
Resumo: | [pt] Para o diagnóstico de distúrbios do sono, um dos exames mais usado é a polissonografia (PSG), na qual é registrada uma variedade de sinais fisiológicos. O exame de PSG é observado por um especialista do sono, processo que pode levar muito tempo e incorrer em erros de interpretação. O presente trabalho desenvolve e compara o desempenho de quatro sistemas baseados em arquiteturas de redes neurais de aprendizado profundo, mais especificamente, redes convolutivas (CNN) e redes recorrentes Long-Short Term Memory (LSTM), para a identificação de despertares relacionados ao esforço respiratório (Respiratory Effort-Related Arousal-RERA) e a eventos de despertar relacionados à apneia/hipopneia. Para o desenvolvimento desta pesquisa, foram usadas as informações de apenas seis canais eletroencefalográficos (EEG) provenientes de 994 registros de PSG noturna da base de dados PhysioNet CinC Challenge2018, além disso, foi considerado o uso de class weight e Focal Loss para lidar com o desbalanceamento de classes. Para a avaliação de cada um dos sistemas foram usadas a Accuracy, AUROC e AUPRC como métricas de desempenho. Os melhores resultados para o conjunto de teste foram obtidos com os modelos CNN1 obtendo-se uma Accuracy, AUROC e AUPRC de 0,8404, 0,8885 e 0,8141 respetivamente, e CNN2 obtendo-se uma Accuracy, AUROC e AUPRC de 0,8214, 0,8915 e 0,8097 respetivamente. Os resultados restantes confirmaram que as redes neurais de aprendizado profundo permitem lidar com dados temporais de EEG melhor que os algoritmos de aprendizado de máquina tradicional, e o uso de técnicas como class weight e Focal Loss melhoram o desempenho dos sistemas. |