[en] MATHEMATICAL PROGRAMMING MODEL FOR STRATEGIC PLANNING OF THE OIL SUPPLY CHAIN UNDER UNCERTAINTY

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: JULIEN PIERRE CASTELLO BRANCO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37127&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37127&idi=2
http://doi.org/10.17771/PUCRio.acad.37127
Resumo: [pt] O presente trabalho tem como foco o estudo do Sistema Petrobras, no que tange o planejamento estratégico dos investimentos da Companhia, sob a ótica da cadeia integrada do petróleo. A partir de um dos modelos matemáticos mais utilizados (e há mais tempo) na empresa, diversas decisões estratégicas de suma importância são suportadas, de modo a maximizar seu resultado operacional ao longo de um horizonte de tempo da ordem de 10 (dez) anos. Com embasamento na literatura atual, evoluções são propostas e testadas no modelo matemático. Primeiramente são introduzidas técnicas de programação estocástica em dois estágios, onde as decisões de investimento são representadas por variáveis de primeiro estágio; e a operação de todo o sistema – desde o refino até a comercialização do petróleo e derivados, passando por toda a questão logística – passa a fazer parte do segundo estágio, após a realização / revelação dos parâmetros estocásticos. Em um segundo passo, técnicas de decomposição são aplicadas para contornar eventuais limitações geradas pelo grande porte atingido pelo modelo, que cresce proporcionalmente ao número de cenários envolvidos na otimização. Os resultados mostram que o modelo estocástico começa a esbarrar nestas limitações a partir da resolução de problemas com mais de 30 cenários. Por outro lado, apesar do tempo computacional consideravelmente maior, o modelo decomposto chegou a resolver até 80 cenários, nos testes realizados.